GraphAI
Accelerate and Improve Machine Learning with Connected Graph Databases.
Today's Brute Force methods of AI are not sustainable for future gains. Adding thousands of GPU's and TB of memory at the problem are not cost efficient or scalable for complex solutions.
Knowledge Graphs greatly improve on the functionality of relational database for the storage of interrelated data. Relationships between data can be calculated far more quickly and with less compute power overhead.
GraphAI works by replacing database table joins with graph queries.
Sparce Matrices and relationships are replaced with graph structures.
Graphs are built to best form a 1:1 relationship of the real world.
Agents/Questions are built to traverse the Graphs for Solutions/Answers.
Traditional Machine Learning Methods can be used to build weighted graph database(s) and combined to solve highly complex problems.
Random walks through the Graph Database can be used to train neural networks.
GraphAI is ideal for:
Real-Time recommendations
Supply Chain Logistics
Patient Modeling
Dynamic Pricing Models
Solving Complex interdependent problems
Constantly changing requirements and data
Growing data-sets
Our Process:
Identify your Use Case
Inventory and Organize Relevant Data
Map relationships across the Data
Implement Use case(s) via Agents